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NODAL MErHODs FOR DISCRETE-ORDINATES TI'ANSPORT
PROBLEMS IN (X,Y) GEOMETRY

Wallace F. Walters and R. Douglas O'Dell
Thecretical Division
University of California
Los Alamos National Laboratory
Los Alamos, New Mexico 87545 USA

A nodal method has been developed for improved spatial differencing of the
discrete-ordinates form of the ¥,y geometry transport -equatlion. In
applying this method, spatial flux expansions arc assumed along the edges
cf each solution node (mesh cell) and flux and source expansions are
assumed in the interior of the node. Nodal method schemes are thus
identified by the expansions used for node edges and node interior.
Nodal schemes assuming consiant-constant, constant-linear, and four
forms of lineai-linear expansion have been developed, programmed, and
used in the analysis of eigenvalue (ke{f) and =hielding problems.

Nod:] vesults are compared with those obtained using the diamond-difference
schene.,

Based on results of eigenvalue Lest problems examined by the authors, it
appears that the lincar-linear nodal method schemes are more cost
cffective than the diamond difference scheme tor eigenvalue (ke[f)

problems. These nodal schemes, although more computationally costly than
the diamond scheme per mesh cell yield results ~f comparable accuracy to
those from diamond with far fewer mesh cells. A net savings in both
computer time and storage is obtained using the no "11 schemes when compared
with the diamond scheme for the same accurucy of results.

For shielding problems both the constant-linear and linear-linear nodal
schemes are superior to the diamond scheme in the scuse of reduced
computer time and storage for the same accurary in results.



NODAL METHODLS FOR DISCRETE-ORDINATES TRANSPORT
PROBLEMS IN (X,Y) GEOMETRY

1. INTRODUCTION

In this work several nodal schemes applicable to tne (x,y) geomecirv
discrete-ordinates trancnort equation are developed. Contrary to many of
the diffusion theory pnodal methods which tend to be tailored to spocific
classes of prcblems!, the transport nodal schemes we describe are used
to generate spatial-difterencing schemes for use in production computer
codes.

In Reference 2 a hybrid type ot nodal scheme is described. In tLhis
scheme a double P; approximation 1is used for angular distribution of
interface currents. This approximat.on 1s not wused in our method.

The schemes we describe i1n this paper yield true discrele-vrdinates
results,

It a4 vecent paper3 & nodal Lransport scheme called the discrete nodal
transport. method (DNTM) was described and used to solve a one-group
inkomogeneous source problem. DNTM assumes a quadratic flux expansion
within the node and a constant flux representation on the node boundaries.
The computer storage required with any node interior <{lux expansion
(source expansion) of quadratic or higher order is likely to be pro-
hibitive tor a production code designed to solve a broal class of
problems. lence, we examine nodal schemes wilh node interio. expansions
up to and including linear and node bhoundary representations up Lo and
including linear.

I1. DEVELOPMENT OF THE NODAL EQUATI1ONS

Transport nodal methods can be characterized by the separate angular flux
expansions assumed on the edges of a node (cell) and over the interior of
the ncde. For cxample, a "constant-linear" method will, hereafter, refer
to one in which independeut constant edge anjzular flux '"expansions' are

assumed together with a linear flux expausion over the unode interior.

Consider the i,j node to be the rectangle defined by XL < x < Xpo Yy <y
<ypoand with Ax 2 xp o= oxp, Ay T ye ot oy, 2 ® (% xp)/2and yoo= (yp ¢
yB\/?. The discrete-ordinales equation ior divection m and energy group
g 18

: , : v ( Dy 4 = g
Um )Wm,g\x'y)/)x * nm dWm'&,x,y),D_ ! Ung'g(x,y) Sm,g(x‘y)

(1)



Hereafter the subscripts m and g will be dropped.
We assume that the source within the node is (at most) linear, i.e.,

= L - * - .
S(x,y) Sav + Sx 2(x xi)/Ax + Sy 2(y yi)/Ay (2)

and that the source for a given iteration is determined using fluxes from
the previous iteration. It is further assumed, for this analysis, that
g > 0, n >0 so that the fluxes on the node edges at X aud yy “re known.

We represent the angular flux along the top edge of the node by, at most,
a linear expansion:

¢(x,yT) = Yy + 0 * 2(x - xi)/Ax (3)

with similar expansions for the other node edges.

Nodal equations are generated by performing transverse integrations of (1)

over the node in the x- and y-directions. If we integrate (1) over [xL,xR]
there results an ordinary differential equation for ¥°(y) =
Xt
1
A—x/ ¥Y(x,y) dx :
xL

1 Q¥y)/dy + O¥Ly) = 8, % SF 20y - v )by - (/e[ Yoyl - ey, y)]

(4)

We con also multiply (1) through by (6/Ax2)(x - xi) and x-integrate over
the node tc get an equation for the y-dependent, first flux moment ¥W!(y) =
X

R
6/0x% * [ (x = x) ¥(x,y) dx
xL

n d¥i(y)/dy + o¥i(y) =5 + (6I-I/AN)*2 ye(y) - O-S[W(rn.y) + 'i‘(xL.v)]i -

(5)



Similar expressions for ¥°(x) and ¥!(x) can be obtained by integrating in
the y-direction.

Exact solutions to (4) and (5) are obtained and evaluated at y = yr
These are:

I
\I‘O()’T) = QJT = q;B exp(—ey) + (1/n)nJ[ EXp[-U (y"[‘ - Y)/r]] o
7B
(6)

3Sav + (2/8y)(y - yj)* Sy - (u/Ax){W(xR,y) - W(xL,yﬂs

and,

T
¥1(yp) = 8p = By exp(ee) + (1/n)*f exp [-0(yp - y)/n)*
VB
(7)

3Sx + (6p/bx) [W°(y) - 0.5 [W(xR.y) t W(xL,yﬂ]§

Similar exact expressions for W°(xR) and Wl(xR) can also be generated. In

glx/u.

these we define Cy s oAy/n, Ex

I1IT. SPECFIC NODAL SCHEMES

The constant-constant (CC) scheme 1is our lowest order approximation and
assumes separate constant flux representations on the cdges and interior

of the node, that is, OT = BB = OR = GL =0
X, < x € x
R
Y(x,y) =y, L : (8)
<y <y
Yy T

The {nterior’ source is assumed constant so that Sx = Sy = 0 in Eq. (2).
Three unknowns remain to be determined, wT' wR, and wav' Equation (6) and

its x-analog ﬁrovide two equations with the third ecquation being the
conservation equation found by integrating (1) over the nude:



by = S,uf0 7 Wy = W e, - (g - ugd/e (9a)

wav is used to compute the source, S v’ for the next iteration. When O is
very small or zero another erpression for ¢av can be used. This ecxpression

can be obtained using either ¥°(x) or ¥°(y):

1T : +R
r

U = Yo (y) dy/by = ¥o(x) dx/Ax
4 L
where ¥°(y) is given by Equation 6.
CL Scheme

The next higher order nodal scheme is the constant -linear (CL) scheme in
which edge fluxes are assumed constant but linear expansions are used for
the interior flux. The latter is achieved by adding the terms ¢x(2/Ax)
{x - xi) and wy(Z/Ay)(y - yj) to the right side of (8). Equation (2) is
nsed for computing the source. For the f{ive unknowns (wT, ¢R' w*v' q&
and wy) we use the three equations from the CC method together with fully

integrated first moments of (1), namely,

<
N

(T S0 m (O = ogdley + (8/e0[uy, - 050 ¥y (10a)

and

<
i"

g 8,00 - O = 0 v (/e [u, - 050+ wy)] (100)

Again when U is very small or zero other expressions for wx and ¢y can be

sed, F )
use or wy

Y
g, = (6/Ay2)(y - yj) ¥o(y) dy . (10¢)



X

R
Y, = / (6/Ax2)(x - xl.) ¥o(x) dx . (10d)
X

X
L

For the CL scheme, of course, all 9 terms in (lU0) are zero. The moments wx
and ¢y are used to compute Sx and Sy for the next iteration. The five

equations 1n five unknowns are easily reduced by hand for computer coding
purposes.

The remaining three schemes use linear expansions both for node edges [see
Eq. (3)] and the node interior.

LL1 Scheme

In the LL1 method we approximate the outflow edge first momenis by

[e=]
1]

TS YR TV (11a)
. R (11b)

@
1l

These equations along with (0) and its x-analog provide four equations for
the four outflow edge unknowns wT‘ GT' wR’ 6“. Again this system of four
equations in four unknowns is easily solved by hand with the algebra being
uncomplicated and vperations few. wav' wx and wy are determined as in the

CL scheme and are used to compute the source for the next iteralion.
L1.2 Scheme

This scheme is similar tn the LL1 scheme. Tae difference is thuat the
outflow edge moments are approximated by

0 = ¥, (12a)

The relations (12) along with equations (10) can be used to determine

GT and GR. Since OR does not appear in the equation for GT and vice
verra, the system of four equations and four unknowns is easily solved

by hand as in the LL1 scheme. Again the algelra is quite simple.



LL3 Scheme

In the LL3 scheme we 1include a bilinear term wuy,*(Z/Ax)(Z/Ay)(x - xi)*
(y - yj), in the flux expansion over the node interior but retain linear

expansions for the source and node edge fluxes. We approximate the out-
flow edge first moments by

I = b * wxy (13a)

@
1}

RS Yyt Wy (13b)

and generate an equation for wxy by taking the fully integrated (x - xi)*
(y - yj) moment of (1). The equations for the remaining unknowns ¢T’ wR,
wav' ¢x and wy are the same as for tine LLl and LL2 schemes. However, 1in
contrast to schemes LL1 and LL2, the equations for OT and OR are now

coupled to one another. Hence, even though the system of 4 equations 1in
4 unknowns 1is still solved by hand before coding, the algebra is mucna
more complicated than in either the LLl1 or LLZ schemes.

LL4 Scheme

The final linear-lincar scheme, LL4, is a pure nodal scheme. The interior
flux is purely linear (not hilinear) and the outflow edge first moments 0T

and OR arc not approximrced. Instead, Eq. (7) and its x-analog are used
for determini.i. 6T and GR. As in the LL3 scheme there is coupling between
Op and B, as can be sexn from Equation (7). The algebra is quite compli-

cated with the number of operations heing aboul the same as for the LL3
scheme.

ADDITIONAL CONSIDERATIONS

Even though negative angular fluxes arc a rare occurance for any of these
schemes, all can yield negative values for the average outflow fluxes
wT and wR. In the higher order methods with a linear intercral expansion

for the angular flux and a linear expansion for the edge angular flnx,
Equation (3), negative values can occur for certain x and y. The fix-
up used in the code insures that

wT + OT* 2(x - xi)/Ax >0, (l4a)

for x.
i-



U+ 8gF 2y - y)/by 20, (14b)

Y-

I'A
<

A
<

ik - 7ith

wav + wx* 2(x - xi)/Ax >0 (l4c)
xl_11 <x < xi+5

g, Y wy* 2(y - yj)/Ay >0 , (14d)

Take (l4a) as an example. If wT < 0 we set wT = 0 and GT = 0. If wT >0
but IGTI > wT we set GT = (OT/IGTI) ¢T.

In (l4c) 1if wal > wav we set wx = (¢x/lwxl) ¢av' When the value of

either an ecdge moment {O) or an interior moment (wx or wy), is recomputed

as above, it will be referred to as a 'rotation." When a f{lux (¢T or wR)
is set to zero, it will be referred to as a fixup.

Care must he taken in solving the equations used in all these schemes as
the cross section 0 approaches zero. For example quantities such as
(r - exp(-sx)]/t:x appear in the solution equations. The value of this
quantity approaches unity as 0°0 and ex*O. Special programming Is

required for this and other quantities so¢ that the corrvect limit is
obtained in the computer code. If care is taken the results are found to
be well behaved in the limit 0»0.

1v. TEST PROBLEM RESULTS

To test the various nodal method schems, a specia: version of the
TWOTRAN-I1I4 production code was created into which all of the various

schemes were programmed. Two multigroup test problems were selected
for analysis: a ZPPR-7A «critical assembly mockup and an iron-water
shielding problem. Both problems were analyzed using an S4 quadrature

with isotropic scatter. The Los Alamos CDC-7600 computers were used for
the analyses.

ZPPA-7A Problem

OQur first test problem was a three-group rectangular geometry ZPPR-7A
critical assembly mockup of a heterogcneous fast recactor core as depicted
in Fig. 1. In the x-y plane the core configuration is comprised ot
rectangular "drawers' of about 5.5 cw x 5.8 cm, with 23 drawers in the



x-direction and 29 drawers in the y-direction. Previous analyses of this
problem using diamond differencing discrete-ordinates codes® showed that
the eigenvalue (keff) for this model was somewhat sensitive to the

problem solution mesh used. With one mesh cell per drawer the diamond
difference scheme gave a keff of 0.979 21 while with four (2x2) mesh

cells per drawer it vyielded a ke of 0.980 01, a difference of some
0.1%. Accordingly, we used this problem to compare our nodal scheme
results to diamond difference results using successive mesh refinements
beginning with 1 mesh vell per drawer and ending vith sixteen (4x4) mesh

cells per drawer. The results are shown in Table 1 along with the
computer run times required to achieve the solutions. A convergence
criterion of 10 * was used for the eigenvalue, the pointwise fission
source, and the pointwise group scalar fluxes. The eigenvalue for an

iniinitesimally fine spatial mesh is 0.980 28 using our S4 quatrature.

The CC nodal method scheme described in this paper is not presented in
the results. It was found that this scheme was comparable to the
diamond scheme in both computer storage and computational efficiency but
was less accurate than diamond for eigenvalue problems and, thus, was
not considered further.

The CL nodal scheme requires about twice the storage and twice the
computational effort as the diamond scheme per mesh point. However, Lhe
CL scheme is about twice as accurate as diamond. As seen in Table 1,
the CL scheme for a 2x2 mesh per drawer gives about the same accuracy in
keff as does the diamond scheme on a 73x3 mesh per drawer with the

computational times roughly equal. Similarly, the CL scheme on a 3x3
mesh per drawer 1is approximately equivalent to the diamond results
from a &4x4 mesh. It thus appears that the CL nodal scheme and the
diamond difference scheme are equivalent on an accuracy versus compu-
tational cost basis for eigenvalue problems.

The LL1 and LL2 nodal schemes were found to be virtually identical in

storage requirements, computational effort, and accuracy. Both require
about twice the computer storage and about 2% to 3 times the computational
effort for a pgiven mesh as does the diamond scheme. Table 1 shows,

however, that these nodal schemes are about ten times more accurate than
diamond. In other words, for a given mesh, the LL1 and LL2 schemes
give an eigenvalue whose error is about an order of magnitude less
than that obtained with the diamond scheme. Conversely, for a given
error in the eigenvalue, the LL1 and LL2 schemes give the same accuracy
as diamond on a mesh whose spacing is about three times larger in each
direction than that required for diamond. Thus, for the ZPPR-7A
problem, the diamond scheme requires a 3x3 mesh per drawer to produce an
eigenvalue as good as that from LL1 or LL2 with only 1 mesh cell per
drawer; and the computational cost (computer run time) for diamond is
about three times as great.

The LL3 and LL4 ncodal method schemes were found to be quite similar in
their performance and ouly the LL4 scheme will be considered further.
This nodal scheme requires about twice as much storage as the diamond
scheme and about four times as much computational effort but it is some
16 times more accurate. Thus, for the ZPPR-7A prcblem, with 1 mesh
cell per drawer, the LL4 nodal schemes gives an eigenvalue as accurate
as that obtained using the diamond scheme with 16 (4x4) mesh cells per
drawer iii ahout one-fourth the time required by the diamond scheme.



Although only the ZPPR-7A problem results are shown, the rnodal method
schemes have been compared with the diamond scheme on other eigenvalue
test problems with comparable results, namely, for eigenvalue problems
nodal method schemes with linear flux expansions both in the mesh cell
interior and along the cell edges are about three to four times better
than the traditional diamond difference scheme on an accuracy versus
coamputational cost basis,

Iron-Water Shielding Problem

Our second test prohlem was a three group iron-water shielding problem as
depicted in Fig. 2. The central watcer region contains a spatially
uniform, group dependent source. With a group 3 total mean free path
of about 1 cm in iron and 0.3 cm in water, the iron shield is 10 mean
free paths thick and the outer water shield is over 30 mean free paths
thick for group 3. The problem is symmetric in the x- and y-dimensions
and uniform square solution meshes were used. Table 2 shows the results
of our analyses in which we report the group-dependent net leakages from
the system. Exact values for the net leakages were obtained by pletting
results and extrapolating to zero mesh size. The "exact”" values used
are 4.783, 2.515, and 4.811 for group 1 through 3, respectively, with a
total source strength of 102 particles per second.

In Table 2 we show results only for the CL, LL1 and LL4 nodal schemes.
The CC nodal scheme¢ was found to be less accurate than diamond and
warranted no further consideration. The LL2 scheme is a virtual twin to
the LL]1 scheme and the LL3 scheme behaved much like the LL4 scheme.

As a readily evident from Table 2 mesh sizes of about 1 cn (both in x
and y) or smaller are required for the diamond scheme to yield realistic
results. With a 1 cm mesh spacing the diamond scheme integral quantity
results are generally wichin 10% of the exact, or infinitesimally small
mesh, results, To obtain results within 1% of the exact with diamond
differencing a mesh spacing of about 0.3 cm or smaller is required.

All of the nodal method schemes give quite similar results for integral
quantities, including the CL scheme in which a constant cell (node) edge

flux representation is used. The principal differences in the various
nodal schemes appear to be the computer run times due tc¢ the differences
in computational effort. An inspection of pointwise quantities in the

detailed results, however, shows a successive improvement in the accuracy
of the poinlwise quantities produced by the CL, LL1 and LL4 schemes.

Table 2 clearly shows the remarkable superiority of the nodal method
schemes over the diamond difference scheme especially for ccarse meshing.
With a 5 cm mesh spacing the nodal schemes yield excellent leakage values -
within 2% of the exact (very fine mesh) values. This accuracy is
somewhat misleading, however, aud is perhaps anomolously good. Although
not shown, we compared average absorption rates within the 5 cm x 5 cm
coarse mesh grid shown in Fig. 2. Several of these absorption rates
are in error by 10-20% of their exact values. We thus conclude that
even with a 5 cm mesh, the nodal schemes give results within 10-20% of
the exact results.

With a 2.5 cm mesh spacing the nodal integral quantity results are within
2-u% of the exact results while the diamond scheme yields errors of
several hundred percent. Pcintwise quantities are somewhat less accurate
for all schemes.



When a 1 cn mesh spacing is used the nodal schemes give integral quantity
results everywhere within 1% of the exact results. The diamond scheme
required a mesh spacing of about 0.3 c¢m to produce results with comparable
accuracy.

The npecdal schemes, when applied to deep penetration-type shielding
problems are thus capable of producing reliable results with considerally
coarser meshes (3 to 5 times coarser in each dimension) than diamond.
Although more computationally expensive than the diamond scheme per mesh
cell, the greatly reduced number of cells required for the nodal schemes
can reduce computer run times by a factor of 3 to 5 when compared with
the diamond schem= for the same accuracy.

An interesting and, as vyet, not understood result of the shielding
problem analysis is the excellent performance of the CL scheme compared
with the LL1 and LL4 schemes for producing integral quantities. The CL
nodal scheme works just as well as the LL schemes. This is in contrast
to the results ooserved for eigenvalue problems in which the CIL scheme
was markedly inferior to the linear-linear LL1 and LL&4 schemes.

V. SUMMARY AND CONCLUSIONS

A nodal method has been dcveloped for improved rpatial differencing of the
discrete-ordinates form of the x,y geometry transport equatinn. In
applying this method, spatial flux expansions are assumed along the edges
of each solution node (mesh cell) and flux and source expansions are

assumed 1in the interior of the node. Nodal method schemes are thus
identified ny the expansions used for node edzes and node 1nterior.
Nodal schemes assuming constant-constant, constant-linear, and four

forms of linear-linear expansion have been devceloped, programmed, and
used in the analysis of eigenvalue (keff) aud shielding problems.

Nodal results are compared with those obtained ucing the diamond-
difference scheme. Node interior expansions higher than linear have not
been considered because of the large increases in computer storage
required by higher order expansions.

In the application of these nodal method schemes to the analvsis of
several problems, two of which are reported in this paper, several
important conclusions have bren reached.

The constant-constant nodal scheme is less accurate than the traditional
diamond-difference scheme and is not considered further.

The constant-linear nodal scheme can be extended to a linear-linear
scheme with very little computer storage penalty. The computational

effort required by linear-linear schemes is somewhat greater than for the
constant-linear scheme.

Rased on results from the ZPPR-7A problem and other eigenvalue tLest
problems examined by the authors, it appears that the linear-linear
nodal method schemes are more cost effective than the diamond difference
scheme for eigenvalue (keff) problems. These nodal schemes, although

more computationally costly than the diamond scheme per mesh cell yield



results ot comparable accuracy to those from diamciid with far fewer mesh
cells. A net savings 1in both computer time and storage is obtained
using the nodal schemes when compared with the diamond scheme for the
same accuracy of results.

For shielding problems both the constant-linear and linear-linear nodal
schemes are superior to the diamond scheme in the sense of rednced
computer time and storage for the same accuracy in results. If only
integral quantities such as net leakzge or region reaction rates are
examined, the constant-linear nodal scheme gives results of comparable
accuracy as those from the linear-linear nodal schemes but in less

computer time. If, however, local or pointwise quantities are examined,
the linear-linear schemes are found tuv be more accurate than those from
the constant-linear scheme. For the sar accuracvy in local or pointwise

quantities, then, the linear-iinear schemes are supcrior.
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Tab[s_]; _¢PPR-17A Proablem Results

(Convergence Criterion = 1071)
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